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PART I

I. INTRODUCTION

This part of the progress report describes the work done under

the grant by the principal investigator while in residence at the

Man Machine Integration Branch, NASA-Ames Research Center. It can

only be described as a most successful year and by all measures

fulfills the intent of the exchange agreement. The exposure to

new ideas, different approaches, and the many and varied projects

was an enriching experience.

Two experimental capabilities were developed on the PDP-12

computers located in the MMIB at NASA because of the uncertainty

as to the status of the SEL 840/E&S Graphics systems throughout

the year. The first of these was an experimental monitor to per-

form experiments in the psychophysics of visual target motion

prediction, discrimination, etc., and exercises the (limited)

graphical capabilities of the PDP-12. The original monitor

(programmed by PMI) was modified by Professor Curry and Dr. Nagel

to include the capability of handling more than 64 stimuli with-

out reinitializing the program, and is being used in the experiment

described in Section II. The second experimental monitor was

programmed entirely by the principal investigator and was used

to investigate pilot decisions in low visibility approaches. The

details of this experimental capability, which has great potential

for exploring decisions and behavior, is described in detail in

Section III.

Other accomplishments during the residence at Ames consisted

of new analytical results in the modelling of choice behavior,

results concerning uniqueness of parameter estimates in psycho-
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physical models, the development of two computer programs (one

with applicability in behavioral research, the other a general

parameter optimization algorithm specifically designed for small

computer applications e.g. the MMIB PDP-12).

II. MONITOR FOR THE PDP-12 CRT DISPLAY

Midway through the year of residence at Ames, preparations

were initiated to perform an experimental investigation of trajec-

tory perception and prediction, with the dual purpose of developing

dynamic perceptual models and determining the essential elements

in traffic situation displays. Because of the unreliability of

the SEL 840 at that time the decision was made to perform these

experiments on the PDP-12. The programming staff of PMI was

given the task of developing an experimental monitor to meet these

criteria, and work was begun in January. This was the first use

of the automatic priority interupt capability on the PDP-12a and

progress was slow; the monitor was not finished until April. By

this time our original experimental goal had to be modified because

of the schedule slippage and the results we had developed for the

decision behavior with multiple signal strengths (see Section IV

below). The experimental monitor developed by PMI is quite flex-

ible, and the complex stimulus control and response logic have

been debugged by PMI. The principal investigator and Dr. Nagel

subsequently modified the monitor (to provide for more than 64

stimuli and to allow a wait interval between each stimulus pre-

sentation) to perform the experiments described below.

The data in our paper are very well described by a model

which assumes that subjects make decisions based on a subjective
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Neyman Pearson criterion. An alternative explanation was that

decisions are made on the basis of maximizing expected value and'

that the utilities were changing with distance from the collision

point (in violation of the subjectively expected utility (SEU)

model). In the paper, we gave several arguments in favor of the

subjective Neyman Pearson model as opposed to the break down of

the SEU model, but there have been no experiments performed on

the SEU model in a similar setting to our knowledge. In fact,

although choice behavior has been modified by manipulating the

payoffs in the two by two stimulus response matrix of the conventional

signal detection paradigm, no one has actually measured the utilities

making up the decisions in such a setting.

To examine this and other display related aspects of the

experimental situation (a target approaching one's own aircraft on

a near collision course), we set the following objectives for the

experiments

. To measure utilities in a signal detection situation

. To determine if utility varies with distance from col-

lision (positive results will support the breakdown of

the SEU model in our previous experiments - negative

results will support the subjective Neyman-Pearson

criterion)

. Evaluate the influence of instruction on utilities

. Gain experience in the measurement of utilities

From our previous experiments with this type of display, we

know that the sensitivity (signal-to noise ratio, or d') varies as

d0 /L, where d0 is the miss distance on the display, and L is the



target distance from one's own aircraft symbol on the display.

We have arranged a set of stimuli to vary distance and d' in a

factorial manner, and will thus be able to ascertain whether or

not there is an interaction between subjective probabilities and

untilities (distance). We plan to evaluate the effect of instruc-

tions of utilities by dividing the subjects into two groups: one

group (control group) will be instructed that the experiments are

basic research in psychology; they will be asked to extrapolate

a line between two points. The second group (experimental group)

will be informed that the experiment is related to traffic situation

displays and anti-collision displays for pilots, and that they are

to place themselves in the position of a pilot who must determine

whether the intruding aircraft will pass to the left or the right.

The last objective is to gain experience in the measurement

of utilities. In the current experiments, we are using the method

of selling lotteries (i.e., how much will the subject be willing to

accept instead of having to play the gamble of whether he was right

or wrong in his guess); this is a non-trivial concept to transfer

to the subject. In the experiments described in the next section

(decisions in low visibility approaches) we are attempting to measure

utilities bybehavioral response; the relative merits of the two

methods will be compared at the termination of the experiments.

In addition to the experimental monitor written by PMI, the

principal investigator wrote auxilliary computer programs to provide

a rapid evaluation of each subject's performance. One program is

used to generate the pseudorandom stimuli upon which all subjects

will be tested. Immediately after the session, the subject's
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responses (previously stored by the experimental monitor) are read

by a program which sifts through the responses to retain only those

which are appropriate. At the same time, these responses and the

subject's "bets" are printed out so that they may be used in the

latter stages of the experiment when the subject must either play

his bet or accept the offering price. With the help of Dr. Nagel,

a third program was written to generate an immediate indication

of the subject's sensitivity (d') on each of the stimulus classes,

and simultaneously calculate the criterion level used by the

subjects (in log likelihood ratio units).

At the time this report is being written, the pilot subjects

are being run to insure a smooth running experiment. The subjects

for the data runs will be started within a week or two.

III. DECISION MAKING IN LOW VISIBILITY APPROACHES

In an effort which is complimentary to that of Dr. Billings and

Dr. Lauber of the MMIB, the principal investigator developed and

programmed a simulation which abstracts the essential elements in a

decision making task during a low visibility approach. The purpose

of this experimental monitor was to develop the capability to

examine the effects of various parameters on decision making with a

system that would be flexible and responsive to changing needs.

This facility allows the preliminary examination of experimental

protocols and other techniques before committing expensive simulator

time, especially that of the airlines. In addition, it allows us

to examine and explore methods of applying psychological stress, a

major goal in our first set of experiments.

A schematic of the apparatus as seen by the pilot-subject is
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shown in Figure 1. The buttons available to the subject are RVR

(to request an RVR reading), turn rate buttons (left, 0, or right)

and GA, the go around button to initiate a missed approach.

In the central portion of the CRT is a plan view of the

approach. In the lower part of the screen are three dots corres-

ponding to the position of the approaching aircraft (present posi-

tion, position one second ago, and position 5 seconds ago). In

the center of the screen are two pairs of dots corresponding to

the middle marker location, equivalent to the 200 foot decision

height for a category I approach. Farther up the screen are the

runway outline,threshold, and three pairs of approach lights or

lead-in lights. Above that are scores posted for the results of

any one trial: on this approach the subject would receive 100

points for a safe landing, and -40 points for a missed approach.

On the left of the screen is a RVR scale with two indices corres-

ponding to 0 RVR and that for the legal minimum (2400 feet). On

the right side of the screen is an altimeter which has a dynamic

range of 0 to 220 feet. The pointer indicating altitude is pegged

at the upper right until the aircraft nears the middle marker; as

the aircraft passes through the middle marker, the indicated altitude

passes through 200 feet.

A random wind disturbance from the side (correlation time of

50 seconds) is introduced to provide a moderately-easy control

task for the pilot. Control is maintained by pushing one of the

three turn-rate buttons. The aircraft has the capability of

being in either the 0 turn rate (constant heading) or a

standard turn rate to the left or the right. The pilot's task in



/POINT SCORE
THIS APPROACH

RUNWAY AND
THRESHOLD

LAN P loo
GA -40

LEAD-IN
LIGHTS (3)

INDICATED
INDICATED RVR ' ,- ALTITUDE
(ON REQUEST) RVR .. . A LT

*** *** - 200

- * - 100

MIDDLE MARKER 0 - 0

PRESENT POSITION -
AND HISTORY TRACE

RVR TURN
R RATE

0 LO0

RVR REQUEST TURN RATE CONTROLS GO AROU D
MODE

FIGURE 1. SCHEMATIC OF LOW VISIBILITY APPROACH DISPLAY AND CONTROLS
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these approaches is to "fly" the aircraft through the middle marker,

over the approach lights, and on to the runway. (The aircraft's

position shown in Figure 1 is close to the initial condition

point.) Only lateral position is important, for if the pilot crosses

the extended threshold line but is not over the runway a crash is

recorded. If at any time before the aircraft crosses the extended

threshold line, the pilot hits the go-around button, a standard

rate left turn is initiated until the heading reaches 600 from

"North" at which time the computer program assumes that a missed

approach was made.

The runway and approach lights may appear either to the

right or left of the middle marker center line, and may be closer

or farther away than the nominal position to represent electronic

guidance errors. This is the appropriate aircraft-centered view,

and simulates the case when one is flying the ILS with needles exactly

centered but finds the runway to the left (or right) when break-

out occurs, and the case when one is either high (or low) of the

indicated altitude.

The slant range "visibility" is included in the program, even

though the intensity in the CRT has only two values (off, on).

There are 5 "characters" drawn by the PDP-12 graphic system which

are under visibility control: the three pairs of lead-in lights,

and the right and left halves of the runway/threshold lights.

Should the center of any of these five characters be within a

square (centered at the aircraft position) whose half-width is the

slant range visibility, then this character will be turned "on"

and will be visible. The approach lights are turned off as ones



gets close to each pair, to simulate their passing underneath the

nose of the airplane; this also prevents the subject from obtaining

additional unrealistic lateral guidance information.

A computer program was written to generate files of approach

trajectories and currently has a catalog of nine approach trajec-

tories. Five of these trajectories have constant (but different)

slant range visibilities leading to the following effect: when the

middle marker is passed, nothing is in view; soon the first approach

light appears, followed by the second and then the third; as the

first approach light is neared, it disappears (passes underneath),

and then the runway/threshold lights suddenly appear and a safe

landing can be accomplished. The decreasing slant range visibility

in this group of five trajectories is such that one must proceed

farther and farther beyond the middle marker (or below decision

height) before the first approach light is sighted. The fifth of

these five trajectories is zero-zero visibility, so the approach

lights and runway/threshold lights never appear. The other four

trajectories correspond to

(1) a high visibility approach (runway and approach lights

are visible as shown in Figure 1 at all times)

(2) an extremely optimistic RVR reading, but very low slant

range visibility

(3) passing through a fog bank after initial acquisition

of the approach lights: the approach lights and runway

lights "drop out", only to reappear after three to four

seconds

(4) fog bank as in (3), but the approach and runway lights

do not reappear.
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First Experiment

In the first set of experiments, performed with the help of

Dr. John Lauber, we had the following objectives:

1. To structure the experimental setting to make the pilot

as aversive to a crash in the simulator as he would be in

real life.

2. To alter the decision strategies by manipulating the

relative values of a landing and a missed approach.

The first objective was desirable to make the decisions as meaning-

ful as possible. After "sacrificing" several pilots, we finally

arrived at the following procedure.

As the subject is led into the experimental chamber he is

shown a poster-sized list on the wall of people who have previously

been subjects in the experiment. Each subject is listed by name,

organization, and score (the total number of points accumulated

over the 50 data trials). The first subject on the list was a

fictitious one (in this case), and in place of his point score was

the word CRASHED in bright red letters. The experimenter writes

in the subject's name and organization (e.g. Joe Jones, TWA) and

leaves the score column blank. The subject is told at that time

that should he crash during the data trials, even if on the first

data trial, his services are no longer required. That is, in terms

of the experiment, he is "dead".

It was obvious to the subject at this point that he was com-

mitted to follow through the experiment, and the idea that he

might crash and have that event recorded for all to see had a very

noticeable effect on almost all subjects.
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Preliminary Results

This is a preliminary report on the results of the experiment,

a summary of the responses to the questionaire. A detailed exam-

ination of the decisions in the trials themselves will be reported

on at a later date.

Thirteen pilot subjects participated in the test and 
completed

a questionnaire, but as the simulation was 
changed after the first

three pilots, they were not included in the data regarding the

simulation itself. Of the remaining 10 subjects, 6 are airline

pilots and 2 are IFR rated NASA employees.

The questionaire consisted of 3 major parts: recent experience

in low visibility approaches and missed approaches; fidelity of

the decision simulation; and stress ratings for actual low visibility

approaches and the simulation. The questionaire is shown in Table I.

Recent Experience - Of the 11 pilots completing the questionaire,

7 had made a total of 37 category I approaches within the last 12

months (six of these 37 approaches were military approaches). Only

2 missed approaches were made by these 7 pilots. When asked what

were the most common causes for executing a missed approach,

(based on their experience), the 3 most frequently mentioned items

were

runway alighment/crosswinds 7 times

visibility 5 times

other traffic 3 times

Simulation Fidelity - The subjects were asked to comment via the

questionaire about the simulator fidelity only with respect to

the decision of whether or not to continue an approach. This was



Name: - Date:

Position: Capt. / F.O. / S.O. Cat. II Qualified? Yes / No

Equipment Currnetly Flying: Company:

During the last 12 months, how many approaches have you flown when reported
visibility was at or very near Cat. I minimums?

As Pilot: Date of most recent:

As Copilot: Date of most recent:

During the last 12 months, how many missed approaches have you flown?

As Pilot: Date of most recent:

As Copilot: Date of most recent:

Judging from your own experience, what is the most likely reason for executing
a missed approach?

Considering only the task of deciding whether to continue an approach or to
go around, how similar is the experimental task you just flew to an actual.
approach? Mark the line below to indicate your best estimate.

Totally Completely
Unlike Identical

0 1 2 3 h 5 6 7 8 9 10

Still considering only the task of deciding whether to continue an approach or
to go around, what in your.opinion are the major similarities or dissimilarities
between the experimental task and an actual low visibility approach?

How stressful do you find actua low visibility approaches to be?
Not at all Extremely
Stressful Stressful

0 1 2 3 4 5 6 7 8 9 10

How stressful did you find the experimental task to be?

Not at all Extremely
Stressful Stressful

0 1 2 3 4 5 6 7. 8 9 10

Table I. Pilot Questionnaire for Low Visibility Decision Simulation
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done both on a semantic differential scale (Totally Unlike -

Completely Identical) and by soliciting comments on the similarities

and dissimilarities of the simulation to an actual low visibility

approach. The ratings of the subjects are shown in Table II where,

it is seen that the mean fidelity rating is 5.2 with a standard

deviation of 1.87, indicating the usual dispersion in intersubject

ratings.

Comments on the similarities of the simulation to a low

visibility approach detailed the assimilation of information through

different sources (RVR, altitude, and runway alignment). When

commenting on the dissimilarities, 3 pilots mentioned the lack of

danger ("one will not die if you miss", "...lacks the element of

danger"). Two of the pilots mentioned that in a real approach more

reliance would be placed on decision height, i.e., that is a cut

and dried decision (a go, no-go I situation). Another commented that

he felt the reward structure was not correct because in actual flight

the rewards for going below minima may be the loss of job., etc,

whereas reward here is a higher point count.

There were other comments made about dissimilarites of the

simulator and the actual approach: three pilots mentioned that

the visual cues were different, and one pilot mentioned the fixed

turn rate characteristics of the simulator. These were offered

even though the question asked specifically about the similarities

of decision making; either the questions were misunderstood or

these factors really do influence the decision. In either case we

feel that these latter two factors are of secondary importance in



Subject/ Simulator Stress Stess S -S SSiM
Organiza- Fidelity Rating Rating

tion Rating -Actual Simulator SACT
Approach

1/A 7 3 2 -1 , .67

2/B 7 4 6 2 1.50

3/C 3 7 3 -4 .43

4/B 3 8 5 -3 .62

5/B 7 8 6* -2 .75

6/A 4 7 2 -5 .28

7/A 7 6 6 0 1.00

8/C 6.5 5.5 5.5 0 1.00

9/D 2.8 7 4 -3 .57

10/D 5 8 6.5 -1.5 .81

Mean 5.23 6.35 4.60 -1.75 .763

S.D. 1.87 1.73 1.73 2.01 .344

*Indicated a change to 2 later in the trials

TABLE II Semantic Differential Ratings of
Simulator Fidelity and Stress
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the light of the other dissimilarities mentioned by the pilots.

Stress Ratings - The pilots were asked to rate the stress of the

experimental task and an actual low visibility approach on a

semantic differential scale (Not At All Stressful - Extremely

Stressful); the results are shown in the other columns of Table II.

We have added columns showing the difference in stress rating, and

the simulator stress (rating) as a fraction of the actual stress

(rating). Of these 10 subjects, three felt that the simulator was

at least as stressful as an actual low visibility approach. At the

other extreme, is subject number 6 who reported the simulator "lacks

the element of danger".

Discussion

We are very encouraged by our first attempt at inducing stress

analogous to actual flight results, although improvements can be

made. It is apparent that some people are not as influenced by

the potential embarassment or "failure" as we had hoped, and

another stressor will be required.

One unexpected factor emerging from these experiments

is the possible existence of airline differences. Subject

no. 2 felt that an actual low visibility approach is a cut

and dried decision because of the reliance on decision height.

He also.,indicated higher stress in the simulator than in the

actual low visibility approach, presumably because of the lack

of a well-defined, externally imposed decision criterion.

Subject 5 who talked about the different reward structure in an

actual approach (loss of job, etc) flies for the same airline

(Airline B). Discussions with these individuals indicated that
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the policy of that particular airline was to observe decision

height as a hard and fast rule; descent below decision height

was to be done under only the most extreme circumstances. In

conversation with pilots from other airlines we found the inter-

pretation of the decision height to be less strict.

Although these behavioral data are not sufficient to infer

the existence of differences in airline operating criteria, or

differences in an interpretation by the airline's pilots, they

suggest that such differences may exist, differences (real or

imagined) which are perceived by some pilots.

IV. DECISION BEHAVIOR WITH RANDOMLY VARYING SIGNAL STRENGTHS

One of the major thrusts of the research under this grant has

been the description and modelling of decision behavior with time

varying psychophysical stimuli. Our approach has been the extension

of sensory-continuum models from random variables (eg. auditory

detection) to random processes. The results of these investigations

will have applications not only to information and display interpre-

tation, but to simulator evaluation as well. Interestingly enough,

this topic has received very little attention in the literature,

and we feel that our results are of major importance in these areas

of application. The principal investigator developed a model for

the description of some of our earlier data, and in collaboration

with Dr. David Nagel of the MMIB and Mr. Gai of MIT, wrote a

paper on our findings. The abstract of this paper, (submitted

to the Journal of Mathematical Psychology), is reprinted Ibelow.
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DECISION BEHAVIOR WITH CHANGING SIGNAL STRENGTH

Abstract

The Theory of Signal Detectability (TSD) has nearly
replaced classical notions of the threshold because of
its ability to separate sensory and decision processes
in weak signal detection and recognition paradigms. The
primary emphasis of recent work has concentrated on the
sensory rather than the decision aspects and almost all
work has been exclusively at one signal strength. We
propose a model to describe behavior at different signal
strengths based on subjective rather than objective
distributions. The model predicts ensemble performance
at a constant objective likelihood ratio (LR) criterion
(even though subjective distributions are the basis for
determining cutoff criteria) unless the observer adopts
a subjective Neyman-Pearson objective. Results from an
experiment in visual discrimination show that some ob-
servers in fact operate at a constant objective LR's as
signal strength is varied randomly over a wide range.
The objective LR's of the other subjects changed dramat-
ically with signal strength, but this behavior is con-
sistent with the use of a subjective Neyman-Pearson
decision rule and the linear relation between subjective
and objective log LR's found in studies of subjective
probability.

V. MUNOML - A MULTINOMIAL MAXIMUM LIKELIHOOD

PROGRAM FOR BEHAVIORAL RESEARCH

Much of the data taken in behavioral research is grouped data,

that is, responses are grouped into categories (e.g., the familiar

stimulus-response matrix). When developing models to explain

these data, one must develop analytical expressions which are

theoretical predictions for these probabilities. During the tenure

at NASA Ames, the principal investigator developed a very general

"executive" program to perform maximum likelihood estimation of

the parameters imbedded in the theoretical probabilities. The

program derives its generality from the fact that only the theoretical

probabilities Pij(x) and the partial derivatives 3pij/axk are

required for the iteration process, and these are provided by a

user-supplied subroutine. The introduction and summary of a
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paper prepared for publication (and NASA CR) which describes the

program in detail is provided below.

MUINOML: A MULTINOMIAL MAXIIMUM LIKELIHOOD PROGRAM FOR BEHAVIORAL RESEARCH

Introduction and Summary

In our research on modelling sensory and decision phen-

omena we were soon confronted with the task of evaluating

both old and new models using both old and new data. Rather

than design an ad hoc estimation program for each new model,

as is typically done, we developed an "executive" program

which provides a general method for estimating parameters

and simultaneously provides flexibility for accomodating
new models with a minimum amount of programming. Our experi-

ence with canned computer programs has been equivocal, so

we decided to provide only the general framework and 
let the

user accomplish the objectives of estimating parameters 
for

his particular model by writing a new subroutine 
within the

constraints of the executive program. In this paper we

report on the method of and our experience with MUNOML, 
an

executive program for Multinomial Maximum Likelihood

Estimation.

The most common class of distributions for which para-

meters must be extracted are multinomial distributions result-

ing from a stimulus-response classificiation, e.g. binary

responses (YES-NO or two alternative forced choice methods),

the method of successive categories (rating scales) or trans-

ition probabilities in a Markov chain. Although a number of

methods exist for estimating such parameters (Restle, 1971)

we have chosen the Maximum Likelihood method and have imple-

mented the scoring of Rao to adjust the parameters from one

iteration to the next. We have chosen the Maximum Likelihood

(ML) method because (1) it is a member of the class of con-

sistent asymptotically normal estimators (CAN); (2) it will

easily handle situations in which all the responses fall

into one category; (3) there are many situations in which

the Maximum Likelihood estimator can be shown to yield

unique estimates for parameters (but, see Curry, 1974a, where

it is shown that other estimation techniques may have this

property as well); and (4) it is the only one exhibiting
first order efficiency (Rao, 1973).

The remainder of this paper is organized-as follows:

in the next section, we present the theoretical basis for

the program, i.e. the most general functions that can be

performed by MUNOML, the executive program. In Section

III, we develop the expressions for some specific behavioral

models in Signal Detection/Recognition, and in Section IV

we briefly describe MUNOML and the method of operation.
Section V discusses some conclusions based on our experi-

ence with MUNOML and addresses the problem of storage-

limited applications. The Appendices contain a FORTRAN IV

listing of MUNOML, a listing of the subroutine to obtain
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parameter estimates for the method of successive categories,
and an index of program variables for MUNOML.

VI. A RANDOM SEARCH PROGRAM FOR LABORATORY COMPUTERS

Another program developed under the grant has wide application

to small laboratory computers such as the PDP-12, in the MMIB. The

algorithm takes advantage of the assets of the small computer: data

compatibility, low operating costs, computer availability, and is

an easy-to-use program for parameter estimation, model fitting,

curve fitting, generalized least squares, etc. It should find

wide usage among investigators using small computers. The abstract

of a paper describing the algorithm is presented below.

A RANDOM SEARCH ALGORITHM FOR LABORATORY COMPUTERS

Abstract

The small laboratory computer is ideal for experimental
control and data acquisition. Post experimental data
processing is many times petformed on large computers because
of the availability of sophisticated programs, but costs
and data compatibility are negative factors. Parameter opti-
mization, which subsumes curve fitting, model fitting, para-
meter estimation, least squares, etc., can be accomplished
on the small computer and offers ease of programming, data
compatibility and low cost as attractive features. A pre-
viously proposed random search algorithm ("random creep")
was found to be very slow in convergence. We present a new
method (the "random leap" algorithm) which starts in a
global search mode and automatically adjusts step size to
speed convergence. A FORTRAN ex&cutive program for the
random leap algorithm is presented which calls a user-
supplied function subroutine. An example of a function sub-
routine is given which calculates Maximum Likelihood Estimates
of Receiver Operating Characteristics parameters from binary-
response data. Other applications in parameter estimation,
generalized least squares, and matrix inversion are discussed.

VII. SUFFICIENT CONDITIONS FOR THE UNIQUENESS OF

PARAMETER ESTIMATES IN BEHAVIORAL MODELS

The estimation of parameters in behavioral models (or any

model) to fit experimental data is done by the minimization or

maximization of statistically meaningful criterion function.
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Constituents of this function are the experimental data; assump-

tions concerning the underlying distributions; the form of the

model; and the form of the criterion function (Maximum Likelihood,

etc.). When minimizing (or maximizing) a function of parameters,

one must always be concerned with the global aspects of the

solution, i.e., has one found a set of parameters which yields

the global extremum? There have been many instances where one

has found a "molehill" without realizing that a "mountain" is

nearby. We have examined a very wide range of behavioral models

and parameter estimation criteria and have determined a practical

set of sufficient conditions which will insure the resulting

parameter estimates are unique regardless of the observations

i.e., that there are no other values to the parameters which

yield a local extremum of the criterion function, hence the

local extremum is a global extremum. The abstract of the paper

describing these results is presented below.

SUFFICIENT CONDITIONS FOR THE UNIQUENESS OF

PARAMETER ESTIMATES FROM BINARY-RESPONSE DATA

Abstract

The proceedure of fitting parameterized models to
experimental data is that of extrematizing a statistically
meaningful scalar-valued vector function. The existence
of multiple local extrema can greatly complicate the search
for the global solution. Sufficient conditions for unique-
ness of the parameter estimate are usually determined from
the convexity of the criterion surface: the convexity
properties are determined by the statistical criterion, the
structure of the model, the underlying distribution, and the
observations (data). In this paper we seek the combinations
of criteria, models and distributions which yield sufficient
conditions for unique parameter estimates regardless of the
observed binary-response data values.

Under mild sufficient conditions usually satisfied in
practice, the Maximum Likelihood, Minimum Chi Square, and
Minimum Transform Chi Square criteria are convex functions
when the parameters appear linearly. These results are
applied to equal-variance models of signal detection/recog-
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nition, sequential response, and additive learning models
with implications on the experimental design. Unequal-
variance models and models of discrete-sensory processing
(rectilinear ROC Curves) lead to nonconvex criteria for
some observations (saddle-points are demonstrated). Al-
though convexity cannot be assured for these cases, the
results suggest an efficient search procedure in a lower
dimensional subspace to find global extrema. The extension
of these results to more than two response levels is
discussed.



24

PART II

This portion of the report describes the work accomplished at MIT

during the reporting period.

VIII. PSYCHOPHYSICAL MODELS OF SIGNAL DETECTION

WITH TIME VARYING UNCERTAINTY

Introduction

Signal detection theory has been extensively used in the last

two decades by psychophysicists for the study of perception and

cognition (Swets 1973). The principal appeal of the theory is its

ability to separate the detection process into its two components,

namely the sensory process and the decision strategy. However these

two processes have not received equal attention, since most of the

published work concentrates on the analysis of the sensory processes,

(Green and Swets 1966). There are, though, many detection processes

in which the decision strategy is at least as important as the

sensory process e.g. when determining percent correct. In those

cases, the most important question to be answered concerns the

way in which the decision maker changes his criteria when the signal

strength changes. Therefore in order to analyze decision strategies

one has to contend with detection.processes in which the signal

strength (detectability, signal to noise ratio, uncertainty) is

time varying.

Two examples of such detection problems will be discussed.

The first one is a pilot using a traffic situation display to avoid

collisions with intruders in his airspace. The second deals with

pilot monitoring of an automatic landing system. In both these

cases the detection task becomes easier as the distance to the

target decreases thus the signal strength can be considered as



time varying.

Since little prior work 
had been done in this class 

of detec-

tion problems, some preliminary 
experiments were necessary. A

visual discrimination experiment 
was designed in which the signal

strength was changed randomly 
to avoid correlation between 

succesive

decisions (Curry 1973). The main conclusion that was 
drawn from

these results is that the 
decision maker changed his 

threshold

with the change in the signal 
strength. This conclusion could not

be predicted on the basis 
of classical SDT results, 

although similar

results were reported (but 
not discussed) by Kinchla 

and Smyzer

(1967). Several decision rules that 
might explain the relationship

between the threshold and 
the detectability were suggested. 

These.

include the Neyman Pearson 
(N.P.) decision strategy, 

and the linear

relation between threshold and deteetability 
(Gai and Curry 1973)

as well as the modified N.P. 
strategy with subjective rather 

than

objective probabilities 
(Curry et al 1974).

After obtaining ideas about 
the decision strategies that

might be used by human 
observers, we applied our 

concepts to more

realistic situations. Two types of such situations 
were considered:

in the first, we studied 
the effect of correlation 

between successive

discrete decisions when the 
signal strength was changed 

in a

sequential (not random) 
manner, in the second, 

we dealt with the

detection of a change in 
the mean of a stationary 

continuous

stochastic process. The work on these two problems, 
which will

be described in more detail 
in the next sections, was 

the main

effort during the last year.

Seuential chan e of signal 
stren th in sinal detection tasks

In our basic experiments 
one of the experimental 

design goals
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was to change the signal strength so that the subject's decisions

in successive decision intervals would tend toward statistical in-

depence. However, in many real-life situations the signal strength

does not change in a random way, so that a correlation between

successive decisions is almost inevitable. This raises the question

as to whether the correlation in signal strength changes the per-

formance of the subjects, and if so, in which direction? The use

of SDT is particularly helpful because it can separate the effect

of the correlation on the sensory process and the decision strategy,

and thereby simplify the analysis.

There are many possible ways of changing the signal strength in

a correlated manner. The method that we chose (referred to as a

"sequential" change) is related to the problem of avoiding collisions.

If two airplanes are flying in linear motion with constant velocity,

the distance between them changes linearly with time. If in addition

one of the pilots is using a Traffic Situation Display, which is

updated by radar (once per 4 seconds), then the position of the

intruder changes linearly on the display, and the state of the world

(closest approach either inside or outside the miss-distance circle)

is the same for all decision intervals. Therefore we define

"sequential" presentation as follows: The input data is presented

to the subjects in blocks, each one of these blocks contains a

fixed number of decision intervals, with the following characteristics:

1. The true state of the world is the same for all the decision

intervals within the same block.

2. The signal strength in each interval in the block is constant,

but is increasing from one interval to the next.
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3. There are no blanking periods between intervals.

By letting the subjects make decisions in two similar tasks,

one in which the signal strength is correlated, and one in which

the signal strength is random, we analyzed the effect of the signal

correlation alone. The results showed that there was a significant

difference in the overall behavior of the subjects. However, the

statistical test showed that there was no significant difference

in the sensory sensitivity, i.e. the hypothesis that the detec-

tability d' was the same for both presentations could not be

rejected. This means that almost all differences in behavior are

due to changes in the decision strategy.

In order to analyze these changes in the decision strategy,

we used a Markov model, in which we assumed that the current

decision is dependent only on the previous decision (but not on

the state of the world, or the signal strength). The transition

probability matrices based on this model, showed a strong tendency

of the subjects to repeat their previous decisions even in those

cases in which their decisions were incorrect in the previous in-

terval. Therefore the Decision Rule (DR) curves for the random

and sequential signals were totally different as can be seen in

Figures 2 and 3. In the framework of classical SDT these results

show an over confident behavior, in which the subject moves his

criterion in such a way as to increase his probability of hit and

therefore increases his probability of false alarm. The manner

in which he does this depends on the decision rule that he is

using. If he is using a constant likelihood ratio decision

rule, he increases the apriori probability of that state of the
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FIGURE 2. CONDITIONAL DR CURVES FOR SEQUENTIAL AND RANDOM PRESENTATION.
SUBJECT A.C.

(STIMULUS: R=RANDOM, S=SEQUENTIAL)
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FIGURE 3. CONDITIONAL DR CURVES FOR SEQUENTIAL AND RANDOM PRESENTATION
SUBJECT A.T.

(STIMULUS: R=RANDOM, S=SEQUENTIAL)
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world on which he had decided before. If he is using a N.P.

strategy, he decreases the probability of a false alarm. (See Fig 2,3).

The conclusion from the above discussion is that the effect

of correlated decisions is manifested in the criterion level 
for the

experiments described here.

Detection of a change in random processes

In the previous section we discussed a detection problem in

which decisions were of a discrete-time routine, i,e. at the end

of each decision interval. This was possible because the information

updating was discrete (radar sweep) and as a result the (displayed)

signal strength remained fixed for 4 seconds. In other cases the

changes may occur continuously, as for example in the case 
when

an ILS system is used for updating an automatic landing system.

In these cases the signal strength is a continuous stochastic

process, and the detection problem is usually a problem of failure

detection, e.g., a detection of a change in the steady state (s.s.)

mean of the process.

In order to analyze the behavior of the decision maker in

such a situation we designed an experiment in which the subject's

task was to detect a change in the s.s. mean of a Gaussian process.

The stimulus was a horizontal line (on a CRT display) whose dis-

placement was determined by the output of a second order, time

invariant system driven by white Gaussian noise. The steady state

mean value of the output was zero for the non-failure mode. After

the subject was trained and familiarized with the nominal process,

a change in the mean was made at an arbitrary time, and the sub-

ject had to decide whether the change in mean was up or down.
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There were four levels of changes of the means with sizes +1/2,

+a, +2a, and +30, where a was the standard deviation of the

displayed process.

Two observation intervals (limited and unlimited) were used.

When the subject had an unlimited observation interval) results

showed that the product of the size of the change and the average

time to detection was constantsuggesting an integrative process.

However when the length of the decision interval was fixed and

the subject was told that the change always occurred in each

interval, the above relation was not kept and the average detec-

tion time for the smaller changes in mean value was much smaller.

The model which was suggested by the data for the description

of the behavior is based on optimal estimation theory (Kailath

1974) and sequential hypothesis testing (Wald, 1947). A block

diagram of this model is shown in Figure 4. The displayed output

is the input to the decision mechanism. Based onthese outputs,

the optimal estimates for the states of the shaping filter are

found by the use of the Kalman filter. However for the detection

process the subject uses the filter residual to obtain uncorrelated

measurements rather then the estimates of the state. Since we

assume that the subject is familiar with the "non failure" mode,

the filter is the correct filter for this mode, and is in the

steady state. Therefore the residual is a zero mean Gaussian pro-

cess. When a failure happens)the mean of the displayed input is

changed, and this will cause the mean of the residual to change.

The detection is therefore done by a discrimination of two Gaussian

random variables with equal variances but different means.



DETECTION MECHANISM
FAILURE -

OBSERVATION NOISE

w(t) SYSTEM KALMAN RES DECISION FINITE DECISION-
DYNAMICS FILTER FUNCTION MEMORY RULE

NEURO-
<-, ,., MUSCULAR -----

DELAY

FIGURE 4. A MODEL FOR DETECTION OF A CHANGE IN THE MEAN OF A RANDOM PROCESS
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This discrimination is done by using Wald's sequential prob-

ability ratio test (Wald 1947). The decision function is the sum

of the successive likelihood ratio of the residuals. However because

of the finite memory of the human subject he does not use the

entire residual history and we have included an exponential

smoothing operator (Schweppe 1973).

The decision mechanism is somewhat different from the decision

mechanism that is used in classical SDT. In sequential observations

the subject chooses two thresholds A and B and decides:

Upif the decision function is greater then A

Down if the decision function is smaller then B

Take another measurement)if the decision mechanism

is between A and B

The values of A and B are determined by the values which the sub-

ject assigns to the two types of error. For a free length

interval the values for the two types of error are fixed during

the whole decision interval. However when the length is fixed

and because the subject knows that a change must occur, he tends

to let the type I error grow with time.

The average detection times for two subjects as a function

of the change in the mean for a unlimited decision interval are

shown in Figures 5 and 6. The results predicted by the model

(disregarding the finite memory) are also shown in those figures.

Figures 7 and 8 show the same results for the same subjects in a

limited decision interval experiment.. The predicted results of the

model, in which the size of the error of type I is changed expon-

entially with time are also shown on these figures.
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FIGURE 5. EXPERIMENTAL AND OPTIMAL DETECTION TIME
SUBJECT B.C.
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FIGURE 6. EXPERIMENTAL AND OPTIMAL AVERACE DETECTION TIME
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FIGURE 7. PREDICTED AND MEASURED AVERAGE DETECTION TIME FOR CLOSED
INTERVAL SUBJECT B.C.
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FIGURE 8. PREDICTED AND MEASURED AVERAGE DETECTION TIME FOR CLOSED
INTERVAL SUBJECT A.C.
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IX. FAILURE DETECTION BY PILOTS IN MULTI-AXIS TASKS

Background

This study of failure detection or the decision of proper

system operation by the pilot concerns itself 
with the situation

of an aircraft in an automatic Category III landing 
approach.

The pilot monitors the progress of the approach 
and the operation

of the equipment and provides a (hopefully) failsoft capability:

should the automatic landing system (ALS) fail, the 
pilot will

detect the failure, identify it and take corrective actions 
as

dictated by the type and time of the failure.

It is axiomatic that the pilot should be capable of detecting

and identifying failures of the ALS accurately, reliably, 
and with

minimal time delay. We hypothesize that the factors with signifi-

cant effect on the pilot's failure detection capability are 
the

following

a. Participation--ranging from passive monitoring of the

displays to actively controlling in one or more axes. 
This

appears to be important because Young (1969) found that monitors

have poorer detection performance then controllers; Vreuls et al

(1968), on the other hand, found monitors to be better failure

detectors.

b. "Workload"--induced by the primary task(s) and the associ-

ated disturbances, by secondary tasks, and by variations in con-

trol dynamics.

Work to date

Simulation facility--During the past months, a simulation capability

including the ADAGE AGT/30 digital graphics computer and a fixed-

base cockpit simulator have been developed.
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a. Simulator dynamics--A mathematical model has been developed

of a large transport aircraft. The actual flight data of a DC-8

were used in the equations of motion (Teper 1969) and the various

parameters were later refined following a series of flight tests

by an American Airlines senior captain. The flight envelope of the

simulator ranges from landing approach to cruise at up to 400 kts.,

at altitudes from 0 to 6000 feet. Non-linear phenomena such as

ground effect and stall characteristics have also been included.

The simulator has been flown by ex-fighter pilots and airline

captains and all feel it is more than adequate for the experimental

program to follow. As an illustration: a non-experienced pilot

tried to align the aircraft with the runway center line on short

final by skidding at a high angle of bank; the simulator reacted

by entering an over-the-top flat spin.

An integrated cue flight director system has been designed

for this simulator, providing the capability to land it manually

in zero-zero conditions in a satisfactory manner. Also, a two-

axis autopilot has been incorporated into the simulation which is

capable of flying ILS-coupled approaches, in either axis or in

both axes, to touchdown. The autopilots and the flight director

system have been tested extensively.

We also have the capability to add wind disturbances to the

simulation. The current wind modes are:

a. No wind.

b. Steady 10 kt. wind from 2600 (i.e., at 1350 to the

runway heading. Runway 4R at Logan Airport, whose

heading is 350, is our active runway).
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c. 5 kt. wind, gusting to 
10 kt., from 2600.

d. 10 kt. wind, gusting to 
20 kt., from2600-

The gusts are modelled as 
filtered white noise with 

a cutoff fre-

quency of f/6 rad/sec. (See Appendix A, "Disturbances")

b. Displays--A CRT mounted on 
the captain's instrument panel 

is

used to present flight information 
in the format of conventional

instruments: airspeed, attitude 
and flight director, DME, vertical

speed, HSI, RMI, altitude 
and localizer/glide slope 

deviations.

We also have the capability to 
incorporate a flight director 

mode

annunciator, if desired.

c. Support software--Support programs 
have been written to

input analog data (control column, rudder pedals, 
etc.), discretes

(e.g., gear), output (CRT, marker beacon indicators, 
etc.) to operate

the side task and to store trajectory 
data in real time (see Appendix

B, "Sample of Trajectory Data").

The side-task is of the warning 
light type: two small red

lights are mounted close to 
each other in the pilot's peripheral

vision field. Either one of the lights turns on 
at random times,

uniformly distributed between 0.5 
and 5 sec., and stays on for 2.0

secs. at most. The pilot is required to turn the 
light off with a

three-position, spring-loaded rocker 
thumb switch which is mounted

on the left horn of the control 
wheel. The program records a correct

response if the switch is activated 
in the correct direction within

the 2.0 seconds; it also stores the response-time 
and the spatial

coordinates of the aircraft at the 
time of the response and turns

the light off. An incorrect response is recorded, 
and the spatial

coordinates stored if the switch 
is activated in the wrong direction

or if the light has not been turned 
off within the 2.0 seconds.
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This side task is similar to the one used by Spyker et al

(NASA CR-1888 1971). It is especially suitable for our purposes

because it reportedly does not require the pilot's entire reserve

capacity and therefore does not result in a significant degradation

of primary task performance (5% loading was reported); at the same

time the performance on this side task is highly sensitive to atten-

tion on the primary task, making it a good workload measuring device.

Future Work

The purpose of this research is the study of the pilot's short

term decisions regarding performance assessment and failure monitoring.

We wish to investigate the relationship between the pilot's ability

to detect failures, his degree of participation in the control

task, and.his overall workload level. To this end, the following,

three phases of work will be undertaken:

a. Completion of the simulation--As we already have a good

simulator incorporating autoland capability, several levels of

wind disturbances and workload measuring side task, we only need

to add pre-programmed failures in the lateral and longitudinal

axes. During the development of the simulator we had many unplanned

failures which we may now incorporate into the programs deliberately.

b. Experimentation--In this phase, scheduled to last for

four to six months, airline pilots who are type-rated in either

B-707, DC-8 or B-747 will be asked to fly approaches with different

degrees of automation and with different levels of wind disturbance;

the pilot's ability to detect failures, to correctly identify

them and to provide a reliable manual back-up capability will be

monitored.
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c. Analysis--The data recorded in the second phase will be

analyzed, to identify statistically significant relationships among

the experimental treatments, to wit, participation, workload 
and

failure detection. An optimum point will be sought, i.e., the

participation mode and workload level which produce 
the optimal

failure detection performance. Equally important is the sensitivity

of failure detection to these independent variables.
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APPENDIX A

Disturbances

Both horizontal and vertical disturbances are modelled 
as

random wind gusts. A random numbers generator is therefore

incorporated in the program, as follows:

Define n+l= (7701 n + 3927) mod 10,000 0 = 7129

is then a random number in the range 0 < n < 10,000Q

with the probability distribution

1
10,000 -

10,000 
n

Define X 2P P << 10,000

to obtain Xnl a random number in the range -P < Xn < P with the

square distribution
1

2P

x

-P P

2 (2P)
and since for a square distribution ax  12

P = x2 x
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The gust sequence Yn was obtained from the random sequence

Xn by passing it through a first order filter G(s)

G(s) = s+w.S+i

The output of the filter was sampled by the program at intervals

of T seconds (the program's update rate), to obtain the gust

sequence

-w. T
Y = el yn + T Xn+1  y0 = 0

The gust sequence has the following statistics:

Yn = T Xn but X= 0 y = 0

2 2i 2 2 2
a = e a +To
y y x

or

OX = -e
a T

y

It is desired that the gusts yn should not exceed some ;preset

value Vmax 99.75% of the time (which corresponds to 3a y). There-

fore, ay = Vmax/3 and

-2w.T
Vmax l-e

x 3 T

-2w.T -2wiT
p _ Vi- Vmax l-e I Vmax -e

2 x 2 3 T T 3



45

To summarize:

1. We generate the random numbers sequence

X += (7701 X + 3927)mod 10,000 0 = 7129

2. Define the modified random sequence

n .V max 1-e
n 10,000 2 T 3

where: Vmax is the desired maximum gust velocity

wi is the gust's cutoff frequency set at 7/6 rad/sec

T is the program's update time, =0.2 sec

3. Pass this sequence through a first order filter G(s)

G(s) =
s + W.

to obtain the random wind gusts.

4. As a final step, a steady (constant) wind is superimposed

on the gusts.

In a series of tests in the computer, the actual mean and

standard deviation of the generated gusts were found to be

within less than 1.2% of the theoretical values, even when as

little as 150 sample points were used.

Dynamics

The aircraft is assumed to posess two separate motions:

a. motion relative to the air (wind axes).

b. motion of the air relative to the ground.

The vector addition of these two motions yields the motion of

the aircraft relative to the ground.

Also, if there is a component of the wind normal to the

heading of the aircraft, V n the aircraft is assumed to acquire
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a component of velocity, Vn, relative to the ground according

-/tto the relationship Vn = V n(l-e )/t or

n ( 1/t

V (S) s + i/t

N

350
nx

n ---
ny

Y

from the geometry of the problem:

VI- V * cos(p - _)

Vn = Vw . sin( - )

Vnx = -Vncos[900 - ( -350)] = -Vnsin(_-35o)

Vny = Vncos(_-350)
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where, in the ground frame of reference:

V is the wind velocity component colinear with the air-

craft heading

Vnw is the wind velocity component normal to the aircraft

heading

Vn is the aircraft velocity component normal to its heading

induced by the wind.

Vnx , Vny are the components of Vn along the x,y axes.

Now,

V (s) 1

V (s) ts+l
nw

1 1
=> V n [V wn-V] [VW sin(4 - P) - Vn]

The aircraft's ground speed, Vg, is then computed from its

airspeed:

V = V + V * cos(_ - _)

and the aircraft senses a side-slip angle 8

V - V

= + arc tan V

a

The components of the aircraft's ground speed along the principal

axes are:

V = [Va + V * cos(_ - f)]-cos( - 350) - Vn * sin(P - 350)

V = [V + V cos( - i)]*sin(P - 35) + VN * cos( - 350)
y a -t n
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For the purpose of the simulation, the following 
values are

used:

t = 1 sec

W = 800 (450 to the runway heading, which is 
350)

and three values for V:

a. V = 10 kts. steady wind

b. V = 5 kts. steady wind + gusts ranging between +5 kts.

c. V = 10 kts. steady wind + gusts ranging between +10 kts.
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Gust Velocity
(Knots)
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APPENDIX B

SAMPLE OF TRAJECTORY DATA
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PARAMETERS AT TOUCHDOWN OR AT STOPACTION

DISTANCE FROM THRESHOLn 1707, FT.

DISTANCE FROM CENTERLINE 12. FT.

INDICATED AIRSPEED 127. KNOTS

VERTICAL SPEED -178. FPM

FLARE COMMANDED AT ALT. 45.9 FT.

PITCH ANGLE 5. DEGS.

BANK ANGLE -1. DEGS,

HEADiNG 35, DEGS.

GROUND TRACK 35. DEGS.

CRAB ANCLE 1. DEGS.

DT = 0,2000
DATA UPDATE RATE = 5

LOCD= 67 HITS= 73 MISS= 12
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44 ZOISZ-T ESP'OESZS FOLLOU:

X, feet REEPONSE To SE .

-72489.52C £ .22C
-69693. 07£ .20,
-60662.C 02 c .2
-67972.25~ Q.200

-5SS73.36C i*252

5. "63 31 1 2C 0
-57376. 70 02£ .2

-56772.117Z . 01 m

-54772.0370 .202
-5391.W C •O'-
-53494.090 * 22C
-50479.8 120 .20
-49015.375 W.2E
-44725.345 0.200

-42974.425 .2c0
-426 4.310 C.2M.
-4=34.72C 0O2,e
-36023.28~ 0.210

-33448. 160 , 25
-3312 . 5 042£Z
-3143C.531 £.252
-26 396.00 .200
-26219.&29 0.202
-22997.719 3.,3
-19422.516 ;.250
-17254.125 6.2,,
-1667. 32ES 0 22
-14579.375 0.212
-14325.391 O.2o
-125CEI.7C 0.2CO
-115s 3.14 0:22C
-195 1.409 0.2,

-9LE. 125 0.20
-9153.664 C.20

2C635.629 6.20
-771.25 0. 2£
-7323.219 0.20
-6523.097 0.250
-4B9.594 .236
-3903.25C 0.2M?
-31143703- 0.2
-1437*C33 025-0
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64 I"CORCT ?PiSFONSE-S FOLLO :

X, feet
-67232.3
-66772.3
-65976.4
-65457.4
-64162. 1
-63661.9
-63237.
-62526.5
-6 5 244 9
-60303.3
-58151 .
-57612.5
-561£1 .4

-5555..0
-52216.9
-51671.4
-47 763.2
-47238.5
-46137.7
-45627 1
-41604.8
-41123.4
-38896. 0
-38402.7
-36894'0
-36442.4
-35708-9
-35282*.5
-34340-0
-33921*2
-32657.0
-32239.8
30692.5
-30275 8
-29946*8
-29530, 3
-28872.4
-28455.8
-27568.2
-27141.0
-25420 * 8
-24993.3
-24532.9
-24105.2
-219C9.0
-21572.5
-21287.5
- 20C2. 0
-2,049* 1

-19632.7
-15350.3
-179 33
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X, feet

-15686.5
-15269.9

-13932.8
-13516.3

-5558.5
-5141.9
-26 6.6

-7~2.7
-286. I

67L.7
1Z73.5



A, FT
2400 

2200

2000 1 DOT DEVIATIONS

1800

1600

1400 1400 GS AUTOPILOT COUPLED
APPROACH

1200

1000

nq gusts
800

600

400

200

5 10 15 20 25 30 35 40 45 50 55 60
RWY MM OM

FT X 10



A, FT

220

200

180

160

140

120

100

TOUCHDOWN -
80

GS AUTOPILOT COUPLED APPROACH
60

NO GUSTS
40 FLARE

COMMAND

20

-1600 -1200 -800 -400 400 800 1200 1600 2000 2400 2800 3200 3600 4000

RWY MM FT



Y /
400 :FT /

300 /

200

100

F X
5 10 15 20 25 30 35 40 45 50 55 60 63

-100

RWY
-200

-300

-400

-500
1 DOT DEVIATION

-600 LOC- AUTOPI LOT

APPROACH
-700

-800 no gusts
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APPENDIX C

PUBLICATIONS
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Curry, R.E., Nagel, D. Gai, E.G. (1974) Decision behavior
with changing signal strength. To be published in
the J of Mathematical Psychology. Also presented at
the Tenth Annual Conference on Manual Control, 1974.

Curry, R.E. (1974) Sufficient conditions for original
parameter estimates in behavioral models. In preparation.

Curry, R.E. (1974) MUNOML: A multinomial maximum likelihood
program for behavioral research. In preparation.

Curry, R.E. (1974) A random search algorithm for laboratory
computers. In preparation.
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